Anton Bondarenko
Created February 25, 2021 © GPL3+

Medical Quadcorder

The StarTrek tricorder was intended to sense environment, to record data and to analyze data. We're adding connectivity. Hence quad-corder.

AdvancedWork in progressOver 5 days30
Medical Quadcorder

Things used in this project

Hardware components

nRF52840 Development Kit
Nordic Semiconductor nRF52840 Development Kit
×1
MAX30102 High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable Health
Maxim Integrated MAX30102 High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable Health
×1
Waveshare Fingerprint Scanner
×1
Generic UV-C LED panel
×1
Generic 16x2 LCD Screen
×1

Software apps and online services

SEGGER Embedded Studio

Hand tools and fabrication machines

Soldering iron (generic)
Soldering iron (generic)
Generic multimeter

Story

Read more

Schematics

High-level schematics

Code

LCD1602 Library

C/C++
Library for generic 16x2 LCD screen for NRf52 SDK
#include "lcd1602.h"
#include "nrf_gpio.h"
#include "nrf_delay.h"

static void pulse_enable(){
    nrf_gpio_pin_clear(E_PIN);
    nrf_delay_ms(1);
    nrf_gpio_pin_set(E_PIN);
    nrf_delay_ms(1);
    nrf_gpio_pin_clear(E_PIN);
    nrf_delay_ms(1);
}

static void send4bits(uint8_t data){
    nrf_gpio_pin_write(D7_PIN, ((data>>3)&0x01));
    nrf_gpio_pin_write(D6_PIN, ((data>>2)&0x01));
    nrf_gpio_pin_write(D5_PIN, ((data>>1)&0x01));
    nrf_gpio_pin_write(D4_PIN, ((data>>0)&0x01));
    pulse_enable();
}

void lcd_send(uint8_t data, uint8_t rd){
    nrf_gpio_pin_write(RS_PIN, rd); 
    nrf_gpio_pin_clear(RW_PIN);
    send4bits(data>>4);
    send4bits(data);
}

void lcd_init(){
// Init GPIO 
    nrf_gpio_cfg_output(RS_PIN);
    nrf_gpio_pin_clear(RS_PIN);
    nrf_gpio_cfg_output(RW_PIN);
    nrf_gpio_pin_clear(RW_PIN);
    nrf_gpio_cfg_output(E_PIN);
    nrf_gpio_pin_clear(E_PIN);
    nrf_gpio_cfg_output(D4_PIN);
    nrf_gpio_pin_clear(D4_PIN);
    nrf_gpio_cfg_output(D5_PIN);
    nrf_gpio_pin_clear(D5_PIN);
    nrf_gpio_cfg_output(D6_PIN);
    nrf_gpio_pin_clear(D6_PIN);
    nrf_gpio_cfg_output(D7_PIN);
    nrf_gpio_pin_clear(D7_PIN);
// Init LCD
    nrf_gpio_pin_clear(RS_PIN); 
    nrf_gpio_pin_clear(RW_PIN);
    nrf_delay_ms(100);
    send4bits(0x03);
    nrf_delay_ms(5);
    send4bits(0x03);
    nrf_delay_ms(5);
    send4bits(0x03);
    nrf_delay_ms(5);
    send4bits(0x02);
    nrf_delay_ms(1);
    lcd_send(0x08|0x20, 0);
    nrf_delay_ms(5);
    lcd_send(0x08|0x20, 0);
    nrf_delay_ms(1);
    lcd_send(0x08|0x20, 0);
    nrf_delay_ms(1);
    lcd_send(0x08, 0);
    nrf_delay_ms(5);
    lcd_send(0x01, 0);
    nrf_delay_ms(5);
    lcd_send(0x06, 0);
    nrf_delay_ms(5);
    lcd_send(0x0c, 0);
    nrf_delay_ms(5);
}

void lcd_set_cursor(uint8_t row, uint8_t column){
    lcd_send(column | ( row ? 0xC0 : 0x80 ), 0);
}

void lcd_write(char *s){
    while(*s) lcd_send(*s++, 1);
}

void lcd_clear(){
    lcd_send(0x01, 0);
}

LCD1602 Library

C/C++
Library for generic 16x2 LCD screen for NRf52 SDK (header file).
#include <stdint.h>

#ifndef LCD1602_H
#define LCD1602_H

#define RS_PIN NRF_GPIO_PIN_MAP(0, 27)
#define RW_PIN NRF_GPIO_PIN_MAP(0, 26)
#define E_PIN  NRF_GPIO_PIN_MAP(0,  2)
#define D4_PIN NRF_GPIO_PIN_MAP(1, 15)
#define D5_PIN NRF_GPIO_PIN_MAP(1, 14)
#define D6_PIN NRF_GPIO_PIN_MAP(1, 13)
#define D7_PIN NRF_GPIO_PIN_MAP(1, 12)

void lcd_init();
void lcd_send(uint8_t c, uint8_t rd);
void lcd_set_cursor(uint8_t row, uint8_t column); 
void lcd_write(char *s);
void lcd_clear();

#endif //LCD1602_H

Waveshare FPS Library

C/C++
Library for working with Waveshare FPS for NRf52 SDK
#include <stddef.h>
#include <stdio.h>
#include "app_uart.h"
#include "nrf_delay.h"
#include "FPScanner.h"


int fp_scanner_request(command_t command, command_t response, uint8_t *data){
    char status[64] = "";
    uint8_t fp_parity = command[0];
    fp_parity ^= command[1];
    fp_parity ^= command[2];
    fp_parity ^= command[3];
    //fp_parity ^= 0;
  
    while(app_uart_flush() != NRF_SUCCESS);

    /* Send request */
    while(app_uart_put(FPS_DELIMITER) != NRF_SUCCESS);
    while(app_uart_put(command[0]) != NRF_SUCCESS);
    while(app_uart_put(command[1]) != NRF_SUCCESS);
    while(app_uart_put(command[2]) != NRF_SUCCESS);
    while(app_uart_put(command[3]) != NRF_SUCCESS);
    while(app_uart_put((uint8_t)0) != NRF_SUCCESS);
    while(app_uart_put(fp_parity) != NRF_SUCCESS);
    while(app_uart_put(FPS_DELIMITER) != NRF_SUCCESS);

    /* Wait */
    //nrf_delay_ms(10);
	
    /* Read repsonse */
    uint16_t data_length;
    uint8_t byte = 0;
    while(app_uart_get(&byte) != NRF_SUCCESS);
    if(byte != FPS_DELIMITER)
        return FPS_FAIL;
    while(app_uart_get(&byte) != NRF_SUCCESS);
    response[0] = byte;
    while(app_uart_get(&byte) != NRF_SUCCESS);
    response[1] = byte;
    while(app_uart_get(&byte) != NRF_SUCCESS);
    response[2] = byte;
    while(app_uart_get(&byte) != NRF_SUCCESS);
    response[3] = byte;
    while(app_uart_get(&byte) != NRF_SUCCESS);
    while(app_uart_get(&byte) != NRF_SUCCESS);
    while(app_uart_get(&byte) != NRF_SUCCESS);

    if(data != NULL) {
        while (app_uart_get(&byte) != NRF_SUCCESS);
        while (app_uart_get(&byte) != NRF_SUCCESS);
        while (app_uart_get(&byte) != NRF_SUCCESS);
        data_length = ((uint16_t)response[1] << 8) + (uint16_t)response[2] - 3;
        for(uint8_t i = 0; i < data_length; i++){
            while (app_uart_get(&byte) != NRF_SUCCESS);
            data[i] = byte;
        }
        while (app_uart_get(&byte) != NRF_SUCCESS);
        while (app_uart_get(&byte) != NRF_SUCCESS);
        while (app_uart_get(&byte) != NRF_SUCCESS);
        sprintf(status, "data was red");
    }
    sprintf(status, "result = %i", response[3]);
    return response[3];
}
	
int fp_scanner_flush(){
    char status[64] = "";
    command_t request, response;
    int result_code = 0;
    request[0] = FPS_DELETE_ALL_USERS;
    request[1] = 0x00;
    request[2] = 0x00;	
    request[3] = 0x00;
    result_code = fp_scanner_request(request, response, NULL);
    sprintf(status, "result = %i", result_code);
    return result_code;
}

int fp_scanner_get_user_count(){
    char status[64] = "";
    command_t request, response;
    int result_code = 0;
    request[0] = FPS_GET_USER_COUNT;
    request[1] = 0x00;
    request[2] = 0x00;	
    request[3] = 0x00;
    result_code = fp_scanner_request(request, response, NULL);
    uint16_t nou = response[2] + (response[1]<<8);
    sprintf(status, "users = %i", nou);
    return nou;
}

int fp_scanner_get_ev(uint8_t *ev){
    char status[64];
    command_t request, response;
    int result_code;
    request[0] = FPS_SCAN_AND_LOOKUP;
    request[1] = 0x00;
    request[2] = 0x00;	
    request[3] = 0x00;
    result_code = fp_scanner_request(request, response, NULL);
    if(result_code == FPS_TIMEOUT){
        sprintf(status, "result = %i", result_code);
        return result_code;
    }
    else if(result_code == 1 || result_code == 2 || result_code == 3) {
	request[0] = FPS_GET_USER_EV;
	request[1] = response[1];
	request[2] = response[2];
        sprintf(status, "Fingerprint found");
        uint16_t uid = response[2] + (response[1]<<8);
        sprintf(status, "result = %i", uid);
        result_code = fp_scanner_request(request, response, ev);
	return result_code;
    }
    else if(result_code == FPS_NO_USER) {
	request[0] = FPS_ADD_FINGERPRINT_1;
	fps_user_id++;
	request[1] = ((uint8_t *)&fps_user_id)[1];
	request[2] = ((uint8_t *)&fps_user_id)[0];
	request[3] = 0x01;
        result_code = fp_scanner_request(request, response, NULL);
	if(result_code != FPS_SUCCESS)
            return result_code;
	request[0] = FPS_ADD_FINGERPRINT_2;
        result_code = fp_scanner_request(request, response, NULL);
	if(result_code != FPS_SUCCESS)
            return result_code;
	request[0] = FPS_ADD_FINGERPRINT_3;
        result_code = fp_scanner_request(request, response, NULL);
        if(result_code != FPS_SUCCESS)
            return result_code;
        request[0] = FPS_GET_USER_EV;
        request[3] = 0x00;
        result_code = fp_scanner_request(request, response, ev);
        sprintf(status, "New fingerprint");
        sprintf(status, "result = %i", result_code);
        return result_code;
    }
    else
	return FPS_FAIL;
}

Waveshare FPS Library

C/C++
Library for working with Waveshare FPS for NRf52 SDK (header file).
#ifndef FPSCANNER_H
#define FPSCANNER_H

#include <stdint.h>
#include "nrf.h"

#define FPS_SUCCESS                       0x00
#define FPS_FAIL                          0x01
#define FPS_FULL                          0x04
#define FPS_NO_USER                       0x05
#define FPS_USER_FOUND                    0x07
#define FPS_TIMEOUT                       0x08

#define FPS_ADD_FINGERPRINT_1             0x01
#define FPS_ADD_FINGERPRINT_2             0x02
#define FPS_ADD_FINGERPRINT_3             0x03
#define FPS_DELETE_USER                   0x04
#define FPS_DELETE_ALL_USERS              0x05
#define FPS_GET_USER_COUNT                0x09
#define FPS_GET_USER_PRIVILEGE            0x0A
#define FPS_SCAN_AND_COMPARE	          0x0B
#define FPS_SCAN_AND_LOOKUP		  0x0C
#define FPS_SCAN_AND_GET_EV               0x23
#define FPS_SCAN_AND_GET_IMAGE            0x24
#define FPS_STRICTNESS                    0x28
#define FPS_GET_ALL_USERS                 0x2B
#define FPS_SLEEP                         0x2C
#define FPS_SET_MODE                      0x2D
#define FPS_SCAN_TIMEOUT                  0x2E
#define FPS_GET_USER_EV                   0x31
#define FPS_PUT_USER_EV                   0x41
#define FPS_PUT_EV_ID_AND_COMPARE         0x42
#define FPS_PUT_EV_AND_LOOKUP             0x43
#define FPS_PUT_EV_SCAN_AND_COMPARE       0x44

#define TERM1602_RIGHT 	0
#define TERM1602_UP	1
#define TERM1602_DOWN	2
#define TERM1602_LEFT	3
#define TERM1602_SELECT	4

#define FPS_READY_TIMEOUT 10
#define FPS_BAUDRATE 115200
#define FPS_DELIMITER 0xF5
#define FPS_DEBUG 1
	
typedef uint8_t command_t[4];
typedef uint8_t data_t[197];	
	
static uint16_t fps_user_id = 0;

//void fp_scanner_send_command(SoftwareSerial *s, command_t command);
//void fp_scanner_read_response(SoftwareSerial *s, command_t response);

int fp_scanner_request(command_t command, command_t response, uint8_t *data);
int fp_scanner_get_user_count();
int fp_scanner_flush();
int fp_scanner_get_ev(uint8_t *ev);
	
/*	
int fp_scanner_sleep(SoftwareSerial *s);
int fp_scanner_get_mode(SoftwareSerial *s, uint8_t *mode);	
int fp_scanner_set_mode(SoftwareSerial *s, uint8_t mode);
int fp_scanner_add_user(SoftwareSerial *s, uint16_t id, uint8_t priv);	
int fp_scanner_delete_user(SoftwareSerial *s, uint16_t id, uint8_t priv);
int fp_scanner_allowOverwrite(SoftwareSerial *s, char b) 
int fp_scanner_add(SoftwareSerial *s, int userId, char us
int fp_scanner_deleteUser(SoftwareSerial *s, int userId) 
int fp_scanner_countUsers(SoftwareSerial *s) 
int fp_scanner_scan(SoftwareSerial *s, int userId, int *uid) 
int fp_scanner_lookupUserPrivlage(SoftwareSerial *s, int userId) 
int fp_scanner_setTimeout(SoftwareSerial *s, int timeout) 
int fp_scanner_setStrictness(SoftwareSerial *s, char s_level) 
*/

#endif /* FPSCANNER_H */

Ported library for Maxim 310102 sensor

C/C++
Library for measuring oxygenation and pulse by Maxim Integrated ported to NRf52 SDK.
/*******************************************************************************
* This is max30102.cpp from MAXREFDES117# ported for nrf52840 DK
* Please refer to 
* https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/tb_tab2
*
*******************************************************************************/
/*******************************************************************************
* Project: MAXREFDES117#
* Filename: max30102.cpp
* Description: This module is an embedded controller driver for the MAX30102
*******************************************************************************/
/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************/
#include "MAX30102.h"
#include "nrf_delay.h"

ret_code_t maxim_max30102_write_reg(nrf_drv_twi_t const * instance, uint8_t addr, uint8_t data){
    uint8_t param[2] = {addr, data};
    nrf_delay_ms(I2C_WRITE_DELAY);
    return nrf_drv_twi_tx(instance, I2C_WRITE_ADDR, param, 2, false);
    nrf_delay_ms(I2C_PAUSE);
}

ret_code_t maxim_max30102_read_reg(nrf_drv_twi_t const * instance, uint8_t addr, uint8_t *data){
    uint32_t result_code;
    nrf_delay_ms(I2C_WRITE_DELAY);
    result_code = nrf_drv_twi_tx(instance, I2C_WRITE_ADDR, &addr, 1, true);
    if(result_code != NRF_SUCCESS)
        return result_code;
    nrf_delay_ms(I2C_READ_DELAY);
    result_code = nrf_drv_twi_rx(instance, I2C_READ_ADDR, data, 1);
    return result_code;
}

ret_code_t maxim_max30102_init(nrf_drv_twi_t const * instance){
  	ret_code_t result_code;
        uint8_t dummy;

        result_code = maxim_max30102_read_reg(instance, REG_INTR_STATUS_1, &dummy);
  	if(result_code != NRF_SUCCESS)                               // Clear INT
            return result_code;

	result_code = maxim_max30102_write_reg(instance, REG_MODE_CONFIG, REG_MODE_RESET_VALUE);
        if(result_code != NRF_SUCCESS)                                                  // Reset
            return result_code;
 	
  	result_code = maxim_max30102_write_reg(instance, REG_INTR_ENABLE_1, 0x00);
  	if(result_code != NRF_SUCCESS)                             // INTR setting
            return result_code;
 
	result_code = maxim_max30102_write_reg(instance, REG_INTR_ENABLE_2, 0x00);
  	if(result_code != NRF_SUCCESS)
            return result_code;
	
	result_code = maxim_max30102_write_reg(instance, REG_FIFO_WR_PTR, 0x00);
  	if(result_code != NRF_SUCCESS)                          //FIFO_WR_PTR[4:0]
            return result_code;
	
        result_code = maxim_max30102_write_reg(instance, REG_OVF_COUNTER, 0x00);
  	if(result_code != NRF_SUCCESS)                          //OVF_COUNTER[4:0]
            return result_code;

        result_code = maxim_max30102_write_reg(instance, REG_FIFO_RD_PTR, 0x00);
  	if(result_code != NRF_SUCCESS)                          //FIFO_RD_PTR[4:0]
            return result_code;

        result_code = maxim_max30102_write_reg(instance, REG_FIFO_CONFIG, 0x0f);
  	if(result_code != NRF_SUCCESS)      //sample avg = 1, fifo rollover=false, 
            return result_code;                            //fifo almost full = 17 
	
        result_code = maxim_max30102_write_reg(instance, REG_MODE_CONFIG, 0x03);
  	if(result_code != NRF_SUCCESS)                        //0x02 for Red only, 
	    return result_code;            //0x03 for SpO2 mode 0x07 multimode LED
	
        result_code = maxim_max30102_write_reg(instance, REG_SPO2_CONFIG, 0x27);
  	if(result_code != NRF_SUCCESS)                  //SPO2_ADC range = 4096nA,  
            return result_code;//SPO2 sample rate (100 Hz), LED pulseWidth (400uS)
	
        result_code = maxim_max30102_write_reg(instance, REG_LED1_PA, 0x24);
  	if(result_code != NRF_SUCCESS)       //Choose value for ~ 7mA for LED1
            return result_code;
		
        result_code = maxim_max30102_write_reg(instance, REG_LED2_PA, 0x24);
  	if(result_code != NRF_SUCCESS)       //Choose value for ~ 7mA for LED2
            return result_code;	

        result_code = maxim_max30102_write_reg(instance, REG_PILOT_PA, 0xff/*7f*/);
  	if(result_code != NRF_SUCCESS)  //Choose value for ~ 25mA for Pilot LED
            return result_code;	
  	
  	return NRF_SUCCESS;  
}


ret_code_t maxim_max30102_read_fifo(nrf_drv_twi_t const * instance, uint32_t *red_sequence, uint32_t *ir_sequence) {
	//read and clear status register
	uint8_t tmp8;
	maxim_max30102_read_reg(instance, REG_INTR_STATUS_1, &tmp8);
  	maxim_max30102_read_reg(instance, REG_INTR_STATUS_2, &tmp8);
						
	// read to the buffer
	uint8_t buffer[6];
	ret_code_t result_code;
	result_code = maxim_max30102_read_reg(instance, REG_FIFO_DATA, buffer);
	if( result_code != NRF_SUCCESS)
		return result_code;
	
	// unpack
	*red_sequence = buffer[2];
	*red_sequence += buffer[1]<<8;
	*red_sequence += buffer[0]<<16;
	*ir_sequence = buffer[5];
	*ir_sequence += buffer[4]<<8;
	*ir_sequence += buffer[3]<<16;
	*red_sequence &= 0x03FFFF;  //Mask MSB [23:18]
  	*ir_sequence &= 0x03FFFF;  //Mask MSB [23:18]
	
	return NRF_SUCCESS;
}

Ported library for Maxim 310102 sensor

C/C++
Library for measuring oxygenation and pulse by Maxim Integrated ported to NRf52 SDK (header file).
/*******************************************************************************
* This is max30102.h from MAXREFDES117# ported for nrf52840 DK
* Please refer to 
* https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/tb_tab2
*
*******************************************************************************/
/*******************************************************************************
* Project: MAXREFDES117#
* Filename: max30102.h
* Description: This module is an embedded controller driver for the MAX30102
*******************************************************************************/
/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#ifndef MAX30102_H
#define MAX30102_H

#include "nrf_drv_twi.h"

#define I2C_WRITE_ADDR 0xAE
#define I2C_READ_ADDR 0xAF

#define I2C_DELAY 20
#define I2C_WRITE_DELAY I2C_DELAY
#define I2C_READ_DELAY I2C_DELAY
#define I2C_PAUSE I2C_DELAY

//register addresses
#define REG_INTR_STATUS_1 0x00
#define REG_INTR_STATUS_2 0x01
#define REG_INTR_ENABLE_1 0x02
#define REG_INTR_ENABLE_2 0x03
#define REG_FIFO_WR_PTR 0x04
#define REG_OVF_COUNTER 0x05
#define REG_FIFO_RD_PTR 0x06
#define REG_FIFO_DATA 0x07
#define REG_FIFO_CONFIG 0x08
#define REG_MODE_CONFIG 0x09
#define REG_SPO2_CONFIG 0x0A
#define REG_LED1_PA 0x0C
#define REG_LED2_PA 0x0D
#define REG_PILOT_PA 0x10
#define REG_MULTI_LED_CTRL1 0x11
#define REG_MULTI_LED_CTRL2 0x12
#define REG_TEMP_INTR 0x1F
#define REG_TEMP_FRAC 0x20
#define REG_TEMP_CONFIG 0x21
#define REG_PROX_INT_THRESH 0x30
#define REG_REV_ID 0xFE
#define REG_PART_ID 0xFF

#define REG_MODE_RESET_VALUE 0x40

ret_code_t maxim_max30102_init(nrf_drv_twi_t const * instance);
ret_code_t maxim_max30102_read_fifo(nrf_drv_twi_t const * instance, uint32_t *red_led, uint32_t *ir_led);
ret_code_t maxim_max30102_write_reg(nrf_drv_twi_t const * instance, uint8_t addr, uint8_t data);
ret_code_t maxim_max30102_read_reg(nrf_drv_twi_t const * instance, uint8_t addr, uint8_t *data);

#endif /* MAX30102_H */

Ported library for Maxim 310102 sensor

C/C++
Algorithm for calculating oxygenation and pulse by Maxim Integrated ported to NRf52 SDK.
/*******************************************************************************
* This is algorithm.cpp from MAXREFDES117# ported for nrf52840 DK
* Please refer to 
* https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/tb_tab2
*
*******************************************************************************/
/*******************************************************************************
* Project: MAXREFDES117#
* Filename: algorithm.cpp
* Description: This module is an embedded controller driver for the MAX30102
*******************************************************************************/
/*******************************************************************************
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************/
#include "algorithm.h"
//#include "mbed.h"

void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer,  int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, 
                              int32_t *pn_heart_rate, int8_t  *pch_hr_valid)
/**
* \brief        Calculate the heart rate and SpO2 level
* \par          Details
*               By detecting  peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
*               Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
*               Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
*
* \param[in]    *pun_ir_buffer           - IR sensor data buffer
* \param[in]    n_ir_buffer_length      - IR sensor data buffer length
* \param[in]    *pun_red_buffer          - Red sensor data buffer
* \param[out]    *pn_spo2                - Calculated SpO2 value
* \param[out]    *pch_spo2_valid         - 1 if the calculated SpO2 value is valid
* \param[out]    *pn_heart_rate          - Calculated heart rate value
* \param[out]    *pch_hr_valid           - 1 if the calculated heart rate value is valid
*
* \retval       None
*/
{
    uint32_t un_ir_mean ,un_only_once ;
    int32_t k ,n_i_ratio_count;
    int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx;
    int32_t n_th1, n_npks,n_c_min;      
    int32_t an_ir_valley_locs[15] ;
    int32_t an_exact_ir_valley_locs[15] ;
    int32_t an_dx_peak_locs[15] ;
    int32_t n_peak_interval_sum;
    
    int32_t n_y_ac, n_x_ac;
    int32_t n_spo2_calc; 
    int32_t n_y_dc_max, n_x_dc_max; 
    int32_t n_y_dc_max_idx, n_x_dc_max_idx; 
    int32_t an_ratio[5],n_ratio_average; 
    int32_t n_nume,  n_denom ;
    // remove DC of ir signal    
    un_ir_mean =0; 
    for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ;
    un_ir_mean =un_ir_mean/n_ir_buffer_length ;
    for (k=0 ; k<n_ir_buffer_length ; k++ )  an_x[k] =  pun_ir_buffer[k] - un_ir_mean ; 
    
    // 4 pt Moving Average
    for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
        n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]);
        an_x[k]=  n_denom/(int32_t)4; 
    }

    // get difference of smoothed IR signal
    
    for( k=0; k<BUFFER_SIZE-MA4_SIZE-1;  k++)
        an_dx[k]= (an_x[k+1]- an_x[k]);

    // 2-pt Moving Average to an_dx
    for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){
        an_dx[k] =  ( an_dx[k]+an_dx[k+1])/2 ;
    }
    
    // hamming window
    // flip wave form so that we can detect valley with peak detector
    for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){
        s= 0;
        for( k=i; k<i+ HAMMING_SIZE ;k++){
            s -= an_dx[k] *auw_hamm[k-i] ; 
                     }
        an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm 
    }

 
    n_th1=0; // threshold calculation
    for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){
        n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ;
    }
    n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE);
    // peak location is acutally index for sharpest location of raw signal since we flipped the signal         
    maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks 

    n_peak_interval_sum =0;
    if (n_npks>=2){
        for (k=1; k<n_npks; k++)
            n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]);
        n_peak_interval_sum=n_peak_interval_sum/(n_npks-1);
        *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes
        *pch_hr_valid  = 1;
    }
    else  {
        *pn_heart_rate = -999;
        *pch_hr_valid  = 0;
    }
            
    for ( k=0 ; k<n_npks ;k++)
        an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2; 


    // raw value : RED(=y) and IR(=X)
    // we need to assess DC and AC value of ir and red PPG. 
    for (k=0 ; k<n_ir_buffer_length ; k++ )  {
        an_x[k] =  pun_ir_buffer[k] ; 
        an_y[k] =  pun_red_buffer[k] ; 
    }

    // find precise min near an_ir_valley_locs
    n_exact_ir_valley_locs_count =0; 
    for(k=0 ; k<n_npks ;k++){
        un_only_once =1;
        m=an_ir_valley_locs[k];
        n_c_min= 16777216;//2^24;
        if (m+5 <  BUFFER_SIZE-HAMMING_SIZE  && m-5 >0){
            for(i= m-5;i<m+5; i++)
                if (an_x[i]<n_c_min){
                    if (un_only_once >0){
                       un_only_once =0;
                   } 
                   n_c_min= an_x[i] ;
                   an_exact_ir_valley_locs[k]=i;
                }
            if (un_only_once ==0)
                n_exact_ir_valley_locs_count ++ ;
        }
    }
    if (n_exact_ir_valley_locs_count <2 ){
       *pn_spo2 =  -999 ; // do not use SPO2 since signal ratio is out of range
       *pch_spo2_valid  = 0; 
       return;
    }
    // 4 pt MA
    for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
        an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4;
        an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4;
    }

    //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
    //finding AC/DC maximum of raw ir * red between two valley locations
    n_ratio_average =0; 
    n_i_ratio_count =0; 
    
    for(k=0; k< 5; k++) an_ratio[k]=0;
    for (k=0; k< n_exact_ir_valley_locs_count; k++){
        if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){             
            *pn_spo2 =  -999 ; // do not use SPO2 since valley loc is out of range
            *pch_spo2_valid  = 0; 
            return;
        }
    }
    // find max between two valley locations 
    // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 

    for (k=0; k< n_exact_ir_valley_locs_count-1; k++){
        n_y_dc_max= -16777216 ; 
        n_x_dc_max= - 16777216; 
        if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){
            for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){
                if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; }
                if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;}
            }
            n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red
            n_y_ac=  an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k])  ; 
        
        
            n_y_ac=  an_y[n_y_dc_max_idx] - n_y_ac;    // subracting linear DC compoenents from raw 
            n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
            n_x_ac=  an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]); 
            n_x_ac=  an_x[n_y_dc_max_idx] - n_x_ac;      // subracting linear DC compoenents from raw 
            n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
            n_denom= ( n_x_ac *n_y_dc_max)>>7;
            if (n_denom>0  && n_i_ratio_count <5 &&  n_nume != 0)
            {   
                an_ratio[n_i_ratio_count]= (n_nume*100)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ;
                n_i_ratio_count++;
            }
        }
    }

    maxim_sort_ascend(an_ratio, n_i_ratio_count);
    n_middle_idx= n_i_ratio_count/2;

    if (n_middle_idx >1)
        n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median
    else
        n_ratio_average = an_ratio[n_middle_idx ];

    if( n_ratio_average>2 && n_ratio_average <184){
        n_spo2_calc= uch_spo2_table[n_ratio_average] ;
        *pn_spo2 = n_spo2_calc ;
        *pch_spo2_valid  = 1;//  float_SPO2 =  -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ;  // for comparison with table
    }
    else{
        *pn_spo2 =  -999 ; // do not use SPO2 since signal ratio is out of range
        *pch_spo2_valid  = 0; 
    }
}


void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
/**
* \brief        Find peaks
* \par          Details
*               Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
*
* \retval       None
*/
{
    maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height );
    maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance );
    *pn_npks = min( *pn_npks, n_max_num );
}

void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t  *pn_x, int32_t n_size, int32_t n_min_height)
/**
* \brief        Find peaks above n_min_height
* \par          Details
*               Find all peaks above MIN_HEIGHT
*
* \retval       None
*/
{
    int32_t i = 1, n_width;
    *pn_npks = 0;
    
    while (i < n_size-1){
        if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){            // find left edge of potential peaks
            n_width = 1;
            while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width])    // find flat peaks
                n_width++;
            if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){                            // find right edge of peaks
                pn_locs[(*pn_npks)++] = i;        
                // for flat peaks, peak location is left edge
                i += n_width+1;
            }
            else
                i += n_width;
        }
        else
            i++;
    }
}


void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
/**
* \brief        Remove peaks
* \par          Details
*               Remove peaks separated by less than MIN_DISTANCE
*
* \retval       None
*/
{
    
    int32_t i, j, n_old_npks, n_dist;
    
    /* Order peaks from large to small */
    maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks );

    for ( i = -1; i < *pn_npks; i++ ){
        n_old_npks = *pn_npks;
        *pn_npks = i+1;
        for ( j = i+1; j < n_old_npks; j++ ){
            n_dist =  pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1
            if ( n_dist > n_min_distance || n_dist < -n_min_distance )
                pn_locs[(*pn_npks)++] = pn_locs[j];
        }
    }

    // Resort indices longo ascending order
    maxim_sort_ascend( pn_locs, *pn_npks );
}

void maxim_sort_ascend(int32_t *pn_x,int32_t n_size) 
/**
* \brief        Sort array
* \par          Details
*               Sort array in ascending order (insertion sort algorithm)
*
* \retval       None
*/
{
    int32_t i, j, n_temp;
    for (i = 1; i < n_size; i++) {
        n_temp = pn_x[i];
        for (j = i; j > 0 && n_temp < pn_x[j-1]; j--)
            pn_x[j] = pn_x[j-1];
        pn_x[j] = n_temp;
    }
}

void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
/**
* \brief        Sort indices
* \par          Details
*               Sort indices according to descending order (insertion sort algorithm)
*
* \retval       None
*/ 
{
    int32_t i, j, n_temp;
    for (i = 1; i < n_size; i++) {
        n_temp = pn_indx[i];
        for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--)
            pn_indx[j] = pn_indx[j-1];
        pn_indx[j] = n_temp;
    }
}

Ported library for Maxim 310102 sensor

C/C++
Algorithm for calculating oxygenation and pulse by Maxim Integrated ported to NRf52 SDK (header file).
/*******************************************************************************
* This is algorithm.h from MAXREFDES117# ported for nrf52840 DK
* Please refer to 
* https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/tb_tab2
*
*******************************************************************************/
/*******************************************************************************
* Project: MAXREFDES117#
* Filename: algorithm.h
* Description: This module is an embedded controller driver for the MAX30102
*******************************************************************************/
/*******************************************************************************
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************/

#ifndef ALGORITHM_H
#define ALGORITHM_H

//#include "mbed.h"
#include <stdint.h>

//#define true 1
//#define false 0
#define FS 100
#define BUFFER_SIZE  (FS* 5) 
#define HR_FIFO_SIZE 7
#define MA4_SIZE  4 // DO NOT CHANGE
#define HAMMING_SIZE  5// DO NOT CHANGE
#define min(x,y) ((x) < (y) ? (x) : (y))

static const uint16_t auw_hamm[31]={ 41,    276,    512,    276,     41 }; //Hamm=  long16(512* hamming(5)');
//uch_spo2_table is computed as  -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ;
static const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 
                            99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 
                            100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 
                            97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 
                            90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 
                            80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67, 
                            66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50, 
                            49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 
                            28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5, 
                            3, 2, 1 } ;
static  int32_t an_dx[BUFFER_SIZE-MA4_SIZE]; // delta
static  int32_t an_x[BUFFER_SIZE]; //ir
static  int32_t an_y[BUFFER_SIZE]; //red


void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer,  int32_t *pn_spo2, int8_t *pch_spo2_valid ,  int32_t *pn_heart_rate , int8_t  *pch_hr_valid);
void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num);
void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height);
void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance);
void maxim_sort_ascend(int32_t *pn_x, int32_t n_size);
void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size);

#endif /* ALGORITHM_H */

Credits

Anton Bondarenko
3 projects • 7 followers

Comments