Michael Hamilton
Created December 6, 2019 © GPL3+

AI Treasure Hunter

Robot that autonomously covers the ground and marks the location of treasure / trash which cleans up the environment while making you money.

AdvancedFull instructions provided20 hours38
AI Treasure Hunter

Things used in this project

Hardware components

NVIDIA Jetson Nano Developer Kit
NVIDIA Jetson Nano Developer Kit
×1
Tracked Tank Chassis
×1
Intel 8265 Wifi
×1
Adafruit PiOLED
×1
DC Motor + Stepper FeatherWing
×1
Intel T265 Vision
×1

Hand tools and fabrication machines

Soldering iron (generic)
Soldering iron (generic)
Solder Wire, Lead Free
Solder Wire, Lead Free
Servo Motor, Premium Male/Male Jumper Wires
Servo Motor, Premium Male/Male Jumper Wires

Story

Read more

Schematics

Circuit Diagram

Shows how all the devices connect together.

Code

Model Training

Python
Used to train neural network
import torch
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms

#create dataset
dataset = datasets.ImageFolder(
    'dataset',
    transforms.Compose([
        transforms.ColorJitter(0.1, 0.1, 0.1, 0.1),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
)

#split train vs test set
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len(dataset) - 50, 50])

#create data loaders
train_loader = torch.utils.data.DataLoader(
    train_dataset,
    batch_size=16,
    shuffle=True,
    num_workers=4
)

test_loader = torch.utils.data.DataLoader(
    test_dataset,
    batch_size=16,
    shuffle=True,
    num_workers=4
)

#define neural network
model = models.alexnet(pretrained=True)
model.classifier[6] = torch.nn.Linear(model.classifier[6].in_features, 2)
device = torch.device('cuda')
model = model.to(device)

#network training
NUM_EPOCHS = 30
BEST_MODEL_PATH = 'best_model.pth'
best_accuracy = 0.0

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

for epoch in range(NUM_EPOCHS):
    
    for images, labels in iter(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        optimizer.zero_grad()
        outputs = model(images)
        loss = F.cross_entropy(outputs, labels)
        loss.backward()
        optimizer.step()
    
    test_error_count = 0.0
    for images, labels in iter(test_loader):
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        test_error_count += float(torch.sum(torch.abs(labels - outputs.argmax(1))))
    
    test_accuracy = 1.0 - float(test_error_count) / float(len(test_dataset))
    print('%d: %f' % (epoch, test_accuracy))
    if test_accuracy > best_accuracy:
        torch.save(model.state_dict(), BEST_MODEL_PATH)
        best_accuracy = test_accuracy
        

Image Gather

Python
Used to gather images for training.
import traitlets
import ipywidgets.widgets as widgets
from IPython.display import display
from jetbot import Camera, bgr8_to_jpeg
import os
from uuid import uuid1

camera = Camera.instance(width=224, height=224)

image = widgets.Image(format='jpeg', width=224, height=224)  # this width and height doesn't necessarily have to match the camera

camera_link = traitlets.dlink((camera, 'value'), (image, 'value'), transform=bgr8_to_jpeg)

#display camera image
display(image)

#define place to save images
blocked_dir = 'dataset/blocked'
free_dir = 'dataset/free'

# we have this "try/except" statement because these next functions can throw an error if the directories exist already
try:
    os.makedirs(free_dir)
    os.makedirs(blocked_dir)
except FileExistsError:
    print('Directories not created becasue they already exist')
    
#define controls for robot
button_layout = widgets.Layout(width='128px', height='64px')
free_button = widgets.Button(description='add free', button_style='success', layout=button_layout)
blocked_button = widgets.Button(description='add blocked', button_style='danger', layout=button_layout)
free_count = widgets.IntText(layout=button_layout, value=len(os.listdir(free_dir)))
blocked_count = widgets.IntText(layout=button_layout, value=len(os.listdir(blocked_dir)))

display(widgets.HBox([free_count, free_button]))
display(widgets.HBox([blocked_count, blocked_button]))

#create gui and functions to collect images
def save_snapshot(directory):
    image_path = os.path.join(directory, str(uuid1()) + '.jpg')
    with open(image_path, 'wb') as f:
        f.write(image.value)

def save_free():
    global free_dir, free_count
    save_snapshot(free_dir)
    free_count.value = len(os.listdir(free_dir))
    
def save_blocked():
    global blocked_dir, blocked_count
    save_snapshot(blocked_dir)
    blocked_count.value = len(os.listdir(blocked_dir))
    
# attach the callbacks, we use a 'lambda' function to ignore the
# parameter that the on_click event would provide to our function
# because we don't need it.
free_button.on_click(lambda x: save_free())
blocked_button.on_click(lambda x: save_blocked())

Model Run

Python
Run the model to control robot.
import torch
import torchvision
import cv2
import numpy as np

from jetbot import Robot
import torch.nn.functional as F
import time

#load model
model = torchvision.models.alexnet(pretrained=False)
model.classifier[6] = torch.nn.Linear(model.classifier[6].in_features, 2)
model.load_state_dict(torch.load('best_model.pth'))
device = torch.device('cuda')
model = model.to(device)

#process images
mean = 255.0 * np.array([0.485, 0.456, 0.406])
stdev = 255.0 * np.array([0.229, 0.224, 0.225])

normalize = torchvision.transforms.Normalize(mean, stdev)

def preprocess(camera_value):
    global device, normalize
    x = camera_value
    x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)
    x = x.transpose((2, 0, 1))
    x = torch.from_numpy(x).float()
    x = normalize(x)
    x = x.to(device)
    x = x[None, ...]
    return x
    
#create instance to drive motors
robot = Robot()

#run network on images
def update(change):
    global blocked_slider, robot
    x = change['new'] 
    x = preprocess(x)
    y = model(x)
    
    # we apply the `softmax` function to normalize the output vector so it sums to 1 (which makes it a probability distribution)
    y = F.softmax(y, dim=1)
    
    prob_blocked = float(y.flatten()[0])
    
    blocked_slider.value = prob_blocked
    
    if prob_blocked < 0.5:
        robot.forward(0.4)
    else:
        robot.left(0.4)
    
    time.sleep(0.001)
        
update({'new': camera.value})  # we call the function once to intialize

#control robot
camera.observe(update, names='value')

Credits

Michael Hamilton
6 projects • 2 followers
I have been inventing new things and building prototypes for over 25 years.

Comments